Thermally Responsive Composite Hydrogel via Self-Assembly for Smart Window Applications
نویسندگان
چکیده
منابع مشابه
Pdms Surface Modification for Application on Thermally Responsive Hydrogel Microvalves
Recent developments in (MEMS) fabrication techniques have exploited the properties of polymers. Traditional lithographic techniques have been used to create a template in a thick layer of photoresist that can be filled with a heat -0r-UV curable polymer and used to cast numerous replicas of Tesla channels in an elastomeric material-poly (dimethylsioloxane) (PDMS). The surface of this replica, a...
متن کاملThermally reversible self-assembly of nanoparticles via polymer crystallization.
The directed self-assembly of gold nanoparticles through the crystallization of surface-grafted polyethylene oxide (PEO) in ethanol-water mixtures is described. This process is fully reversible and tunable through either the size of the core or the polymeric coating. Characterization by X-ray scattering and electron microscopy of the self-assembled structures reveals order at the nanoscale, typ...
متن کاملMethylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications
The thermoresponsive behavior of a Methylcellulose (MC) polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scann...
متن کاملHydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites.
In this paper, we describe a unique strategy for preparing discrete composite nanoparticles consisting of a large gold core (60-150 nm in diameter) surrounded by a thermally responsive nontoxic hydrogel polymer derived from the polymerization of N-isopropylacrylamide (NIPAM) or a mixture of NIPAM and acrylic acid. We synthesize these composite nanoparticles at room temperature by inducing the g...
متن کاملThermally responsive polymer-nanoparticle composites for biomedical applications.
Thermally responsive polymer-metal nanoparticle composites couple the ability of certain metal nanoparticles to convert external stimuli to heat with polymers that display sharp property changes in response to temperature changes, allowing for external control over polymer properties. These systems have been investigated for a variety of biomedical applications, including drug delivery, microfl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanomaterials
سال: 2016
ISSN: 1687-4110,1687-4129
DOI: 10.1155/2016/9307913